

Testimonials and References

Testimonials
Dr. Lou Dell'Italia MD
Clinical Cardiologist / UAB Professor / VA Researcher
"The TAI test is quickly becoming an essential pillar of our research—not only in cardiology but also in PTSD and other trauma-related conditions with immunological and inflammatory components. Its high sensitivity, specificity, and translational relevance position it as an exceptional tool for clinical use."
Dr. Will Meeks PsyD
Therapist / Clinical Director
"As a clinician, I rely on subjective assessments, my clinical insight, and the client’s presentation. With this test, I now have objective science backed data to support my clinical judgement and insight. It also helps the client to better see and understand the depth of their trauma. This is the tool we have been waiting for!"
Dr. Marc Ó Gríofa MD PhD
Physician / CMO / Ironman
"APX made something that’s usually invisible explicit: I was race-ready, but at a real physiological cost. Having objective molecular data before and after a triathalon transformed how I think about training, tapering, and recovery for endurance performance."
Jeremy Blair
Therapist / CEO Wellstone
"iXpressGenes can help us gain insights that weren’t previously available. The technology helps our teams better connect mental health and primary care in a more integrated, data-driven way. It adds meaningful context to clinical decision-making without adding friction to care."
Dr. Michelle Taylor DO
Medical Director / Ultrarunner
"I joined iXpressGenes as Medical Director because I was compelled by the clinical experience and scientific rigor that led to the development and validation of the Trauma Autoimmune Indicator (TAI) test. When we began working on the APX test, I was confident in the underlying science but initially less certain about its broader applicability—until I saw its potential firsthand.
​
As an ultrarunner, I tested myself both before and after completing a 100-mile ultramarathon. The results were striking. Subjectively, I felt better post-race than I had after similar efforts in the past, and the biomarker data supported that experience. That combination of lived experience and objective measurement reinforced my belief in the platform, and I look forward to continuing to use the test as I prepare for my next 100-mile race."
References
MENTAL HEALTH
Albornoz, E. A., Woodruff, T. M., & Gordon, R. (2018). Inflammasomes in CNS Diseases. Exp Suppl, 108, 41–60. doi:10.1007/978-3-319-89390-7_3. https://www.ncbi.nlm.nih.gov/pubmed/30536167
Danese, A., Pariante, C. M., Caspi, A., Taylor, A., & Poulton, R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A, 104(4), 1319–1324. doi:10.1073/pnas.0610362104. https://www.ncbi.nlm.nih.gov/pubmed/17229839
Dantzer, R., Cohen, S., Russo, S. J., & Dinan, T. G. (2018). Resilience and immunity. Brain Behav Immun, 74, 28–42. doi:10.1016/j.bbi.2018.08.010. https://www.ncbi.nlm.nih.gov/pubmed/30102966
Hauptmann, J., Johann, L., Marini, F., Kitic, M., Colombo, E., Mufazalov, I. A., . . . Waisman, A. (2020). Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol, 140(4), 549–567. doi:10.1007/s00401-020-02187-x. https://www.ncbi.nlm.nih.gov/pubmed/32651669
Huang, X., Hussain, B., & Chang, J. (2021). Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther, 27(1), 36–47. doi:10.1111/cns.13569. https://www.ncbi.nlm.nih.gov/pubmed/33381913
Lauten, T. H., Natour, T., & Case, A. J. (2024). Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci, 252, 103159. doi:10.1016/j.autneu.2024.103159. https://www.ncbi.nlm.nih.gov/pubmed/38428324
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol Bull, 137(6), 959–997. doi:10.1037/a0024768. https://www.ncbi.nlm.nih.gov/pubmed/21787044
Nunez-Rios, D. L., Martinez-Magana, J. J., Nagamatsu, S. T., Andrade-Brito, D. E., Forero, D. A., Orozco-Castano, C. A., & Montalvo-Ortiz, J. L. (2022). Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines, 10(5). doi:10.3390/biomedicines10051107. https://www.ncbi.nlm.nih.gov/pubmed/35625844
Passos, I. C., Vasconcelos-Moreno, M. P., Costa, L. G., Kunz, M., Brietzke, E., Quevedo, J., . . . Kauer-Sant'Anna, M. (2015). Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry, 2(11), 1002–1012. doi:10.1016/S2215-0366(15)00309-0. https://www.ncbi.nlm.nih.gov/pubmed/26544749
Walsh, J. G., Muruve, D. A., & Power, C. (2014). Inflammasomes in the CNS. Nat Rev Neurosci, 15(2), 84–97. doi:10.1038/nrn3638. https://www.ncbi.nlm.nih.gov/pubmed/24399084
​
HUMAN PERFORMANCE
Cabral-Santos, C., de Lima Junior, E. A., Fernandes, I., Pinto, R. Z., Rosa-Neto, J. C., Bishop, N. C., & Lira, F. S. (2019). Interleukin-10 responses from acute exercise in healthy subjects: A systematic review. J Cell Physiol, 234(7), 9956–9965. doi:10.1002/jcp.27920. https://www.ncbi.nlm.nih.gov/pubmed/30536945
Cinelli, M. A., Do, H. T., Miley, G. P., & Silverman, R. B. (2020). Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev, 40(1), 158–189. doi:10.1002/med.21599. https://www.ncbi.nlm.nih.gov/pubmed/31192483
Ducharme, J. B., Specht, J. W., Bailly, A. R., Fennel, Z. J., Nava, R. C., Mermier, C. M., . . . Deyhle, M. R. (2025). Training Status Influences Regulation of Muscle and PBMC TLR4 Expression and Systemic Cytokine Responses to Vigorous Endurance Exercise. Med Sci Sports Exerc, 57(4), 767–780. doi:10.1249/MSS.0000000000003618. https://www.ncbi.nlm.nih.gov/pubmed/39625335
Farhana, A., & Lappin, S. L. (2025). Biochemistry, Lactate Dehydrogenase. In StatPearls. Treasure Island (FL).
Haller, N., Reichel, T., Zimmer, P., Behringer, M., Wahl, P., Stoggl, T., . . . Simon, P. (2023). Blood-Based Biomarkers for Managing Workload in Athletes: Perspectives for Research on Emerging Biomarkers. Sports Med, 53(11), 2039–2053. doi:10.1007/s40279-023-01866-5. https://www.ncbi.nlm.nih.gov/pubmed/37341908
Kasapis, C., & Thompson, P. D. (2005). The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol, 45(10), 1563–1569. doi:10.1016/j.jacc.2004.12.077. https://www.ncbi.nlm.nih.gov/pubmed/15893167
Kim, J., & Lee, J. (2020). Plasma MMP-9, TIMP-1, and TGF-beta1 Responses to Exercise-Induced Muscle Injury. Int J Environ Res Public Health, 17(2). doi:10.3390/ijerph17020566. https://www.ncbi.nlm.nih.gov/pubmed/31963105
Kreher, J. B., & Schwartz, J. B. (2012). Overtraining syndrome: a practical guide. Sports Health, 4(2), 128–138. doi:10.1177/1941738111434406. https://www.ncbi.nlm.nih.gov/pubmed/23016079
Malkowska, P., & Sawczuk, M. (2023). Cytokines as Biomarkers for Evaluating Physical Exercise in Trained and Non-Trained Individuals: A Narrative Review. Int J Mol Sci, 24(13). doi:10.3390/ijms241311156. https://www.ncbi.nlm.nih.gov/pubmed/37446334
Rullman, E., Olsson, K., Wagsater, D., & Gustafsson, T. (2013). Circulating MMP-9 during exercise in humans. Eur J Appl Physiol, 113(5), 1249–1255. doi:10.1007/s00421-012-2545-z. https://www.ncbi.nlm.nih.gov/pubmed/23160657
Sankova, M., Nikolenko, V., Achkasov, E., Schamas-Esposel, M., Sankov, A., Orliuk, M., . . . Zharikov, Y. (2025). Connective tissue dysplasia and pathogenetic mechanisms as a factor in impaired musculoskeletal adaptation in youth: a sports medicine review. Sport Sciences for Health. doi:10.1007/s11332-025-01474-y. https://doi.org/10.1007/s11332-025-01474-y
Seoane, P. I., Lee, B., Hoyle, C., Yu, S., Lopez-Castejon, G., Lowe, M., & Brough, D. (2020). The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol, 219(12). doi:10.1083/jcb.202006194. https://www.ncbi.nlm.nih.gov/pubmed/33044555
Smolgovsky, S., Ibeh, U., Tamayo, T. P., & Alcaide, P. (2021). Adding insult to injury - Inflammation at the heart of cardiac fibrosis. Cell Signal, 77, 109828. doi:10.1016/j.cellsig.2020.109828. https://www.ncbi.nlm.nih.gov/pubmed/33166625
Thompson, D., Basu-Modak, S., Gordon, M., Poore, S., Markovitch, D., & Tyrrell, R. M. (2005). Exercise-induced expression of heme oxygenase-1 in human lymphocytes. Free Radic Res, 39(1), 63–69. doi:10.1080/10715760400022327. https://www.ncbi.nlm.nih.gov/pubmed/15875813
Trappe, T. A., & Liu, S. Z. (2013). Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise. J Appl Physiol (1985), 115(6), 909–919. doi:10.1152/japplphysiol.00061.2013. https://www.ncbi.nlm.nih.gov/pubmed/23539318
Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., . . . Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exerc Immunol Rev, 17, 6–63. https://www.ncbi.nlm.nih.gov/pubmed/21446352https://www.ncbi.nlm.nih.gov/pubmed/21446352
Weinberg, J. B. (1998). Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med, 4(9), 557–591. doi:10.1007/BF03401758. https://www.ncbi.nlm.nih.gov/pubmed/9848075
Wlodarczyk, L., Cichon, N., Karbownik, M. S., Saluk, J., & Miller, E. (2024). Exploring the Role of MMP-9 and MMP-9/TIMP-1 Ratio in Subacute Stroke Recovery: A Prospective Observational Study. Int J Mol Sci, 25(11). doi:10.3390/ijms25115745. https://www.ncbi.nlm.nih.gov/pubmed/38891934
Xia, Y., Shao, J., Wang, H., Tan, Q., Han, Q., & Yi, M. (2021). Complex Probiotics Supplementation Improves Overtraining-Induced Muscle Inflammatory Response and Antioxidant Status Via LPS-TLR4/NF-κb Signalling Pathway in Rats. Research Square. doi:10.21203/rs.3.rs-513418/v1. http://europepmc.org/abstract/PPR/PPR340001
Xu, J., & Nunez, G. (2023). The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci, 48(4), 331–344. doi:10.1016/j.tibs.2022.10.002. https://www.ncbi.nlm.nih.gov/pubmed/36336552
​
