top of page
bg_edited_edited_edited.jpg

Testimonials and References

iXG-gradient.png

Testimonials

Dr. Lou Dell'Italia MD
Clinical Cardiologist / UAB Professor / VA Researcher

"The TAI test is quickly becoming an essential pillar of our research—not only in cardiology but also in PTSD and other trauma-related conditions with immunological and inflammatory components. Its high sensitivity, specificity, and translational relevance position it as an exceptional tool for clinical use."

Dr. Will Meeks PsyD
Therapist / Clinical Director

"As a clinician, I rely on subjective assessments, my clinical insight, and the client’s presentation. With this test, I now have objective science backed data to support my clinical judgement and insight. It also helps the client to better see and understand the depth of their trauma. This is the tool we have been waiting for!"

Dr. Marc Ó Gríofa MD PhD
Physician / CMO / Ironman

"APX made something that’s usually invisible explicit: I was race-ready, but at a real physiological cost. Having objective molecular data before and after a triathalon transformed how I think about training, tapering, and recovery for endurance performance."

Jeremy Blair
Therapist / CEO Wellstone

"iXpressGenes can help us gain insights that weren’t previously available. The technology helps our teams better connect mental health and primary care in a more integrated, data-driven way. It adds meaningful context to clinical decision-making without adding friction to care."

Dr. Michelle Taylor DO
Medical Director / Ultrarunner

"I joined iXpressGenes as Medical Director because I was compelled by the clinical experience and scientific rigor that led to the development and validation of the Trauma Autoimmune Indicator (TAI) test. When we began working on the APX test, I was confident in the underlying science but initially less certain about its broader applicability—until I saw its potential firsthand.

​

As an ultrarunner, I tested myself both before and after completing a 100-mile ultramarathon. The results were striking. Subjectively, I felt better post-race than I had after similar efforts in the past, and the biomarker data supported that experience. That combination of lived experience and objective measurement reinforced my belief in the platform, and I look forward to continuing to use the test as I prepare for my next 100-mile race."

References

MENTAL HEALTH

Albornoz, E. A., Woodruff, T. M., & Gordon, R. (2018). Inflammasomes in CNS Diseases. Exp Suppl, 108, 41–60. doi:10.1007/978-3-319-89390-7_3. https://www.ncbi.nlm.nih.gov/pubmed/30536167

Danese, A., Pariante, C. M., Caspi, A., Taylor, A., & Poulton, R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A, 104(4), 1319–1324. doi:10.1073/pnas.0610362104. https://www.ncbi.nlm.nih.gov/pubmed/17229839

Dantzer, R., Cohen, S., Russo, S. J., & Dinan, T. G. (2018). Resilience and immunity. Brain Behav Immun, 74, 28–42. doi:10.1016/j.bbi.2018.08.010. https://www.ncbi.nlm.nih.gov/pubmed/30102966

Hauptmann, J., Johann, L., Marini, F., Kitic, M., Colombo, E., Mufazalov, I. A., . . . Waisman, A. (2020). Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol, 140(4), 549–567. doi:10.1007/s00401-020-02187-x. https://www.ncbi.nlm.nih.gov/pubmed/32651669

Huang, X., Hussain, B., & Chang, J. (2021). Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther, 27(1), 36–47. doi:10.1111/cns.13569. https://www.ncbi.nlm.nih.gov/pubmed/33381913

Lauten, T. H., Natour, T., & Case, A. J. (2024). Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci, 252, 103159. doi:10.1016/j.autneu.2024.103159. https://www.ncbi.nlm.nih.gov/pubmed/38428324

Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: moving toward a model of behavioral and biological mechanisms. Psychol Bull, 137(6), 959–997. doi:10.1037/a0024768. https://www.ncbi.nlm.nih.gov/pubmed/21787044

Nunez-Rios, D. L., Martinez-Magana, J. J., Nagamatsu, S. T., Andrade-Brito, D. E., Forero, D. A., Orozco-Castano, C. A., & Montalvo-Ortiz, J. L. (2022). Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines, 10(5). doi:10.3390/biomedicines10051107. https://www.ncbi.nlm.nih.gov/pubmed/35625844

Passos, I. C., Vasconcelos-Moreno, M. P., Costa, L. G., Kunz, M., Brietzke, E., Quevedo, J., . . . Kauer-Sant'Anna, M. (2015). Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry, 2(11), 1002–1012. doi:10.1016/S2215-0366(15)00309-0. https://www.ncbi.nlm.nih.gov/pubmed/26544749

Walsh, J. G., Muruve, D. A., & Power, C. (2014). Inflammasomes in the CNS. Nat Rev Neurosci, 15(2), 84–97. doi:10.1038/nrn3638. https://www.ncbi.nlm.nih.gov/pubmed/24399084

​

HUMAN PERFORMANCE

Cabral-Santos, C., de Lima Junior, E. A., Fernandes, I., Pinto, R. Z., Rosa-Neto, J. C., Bishop, N. C., & Lira, F. S. (2019). Interleukin-10 responses from acute exercise in healthy subjects: A systematic review. J Cell Physiol, 234(7), 9956–9965. doi:10.1002/jcp.27920. https://www.ncbi.nlm.nih.gov/pubmed/30536945

Cinelli, M. A., Do, H. T., Miley, G. P., & Silverman, R. B. (2020). Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev, 40(1), 158–189. doi:10.1002/med.21599. https://www.ncbi.nlm.nih.gov/pubmed/31192483

Ducharme, J. B., Specht, J. W., Bailly, A. R., Fennel, Z. J., Nava, R. C., Mermier, C. M., . . . Deyhle, M. R. (2025). Training Status Influences Regulation of Muscle and PBMC TLR4 Expression and Systemic Cytokine Responses to Vigorous Endurance Exercise. Med Sci Sports Exerc, 57(4), 767–780. doi:10.1249/MSS.0000000000003618. https://www.ncbi.nlm.nih.gov/pubmed/39625335

Farhana, A., & Lappin, S. L. (2025). Biochemistry, Lactate Dehydrogenase. In StatPearls. Treasure Island (FL).

Haller, N., Reichel, T., Zimmer, P., Behringer, M., Wahl, P., Stoggl, T., . . . Simon, P. (2023). Blood-Based Biomarkers for Managing Workload in Athletes: Perspectives for Research on Emerging Biomarkers. Sports Med, 53(11), 2039–2053. doi:10.1007/s40279-023-01866-5. https://www.ncbi.nlm.nih.gov/pubmed/37341908

Kasapis, C., & Thompson, P. D. (2005). The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol, 45(10), 1563–1569. doi:10.1016/j.jacc.2004.12.077. https://www.ncbi.nlm.nih.gov/pubmed/15893167

Kim, J., & Lee, J. (2020). Plasma MMP-9, TIMP-1, and TGF-beta1 Responses to Exercise-Induced Muscle Injury. Int J Environ Res Public Health, 17(2). doi:10.3390/ijerph17020566. https://www.ncbi.nlm.nih.gov/pubmed/31963105

Kreher, J. B., & Schwartz, J. B. (2012). Overtraining syndrome: a practical guide. Sports Health, 4(2), 128–138. doi:10.1177/1941738111434406. https://www.ncbi.nlm.nih.gov/pubmed/23016079

Malkowska, P., & Sawczuk, M. (2023). Cytokines as Biomarkers for Evaluating Physical Exercise in Trained and Non-Trained Individuals: A Narrative Review. Int J Mol Sci, 24(13). doi:10.3390/ijms241311156. https://www.ncbi.nlm.nih.gov/pubmed/37446334

Rullman, E., Olsson, K., Wagsater, D., & Gustafsson, T. (2013). Circulating MMP-9 during exercise in humans. Eur J Appl Physiol, 113(5), 1249–1255. doi:10.1007/s00421-012-2545-z. https://www.ncbi.nlm.nih.gov/pubmed/23160657

Sankova, M., Nikolenko, V., Achkasov, E., Schamas-Esposel, M., Sankov, A., Orliuk, M., . . . Zharikov, Y. (2025). Connective tissue dysplasia and pathogenetic mechanisms as a factor in impaired musculoskeletal adaptation in youth: a sports medicine review. Sport Sciences for Health. doi:10.1007/s11332-025-01474-y. https://doi.org/10.1007/s11332-025-01474-y

Seoane, P. I., Lee, B., Hoyle, C., Yu, S., Lopez-Castejon, G., Lowe, M., & Brough, D. (2020). The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol, 219(12). doi:10.1083/jcb.202006194. https://www.ncbi.nlm.nih.gov/pubmed/33044555

Smolgovsky, S., Ibeh, U., Tamayo, T. P., & Alcaide, P. (2021). Adding insult to injury - Inflammation at the heart of cardiac fibrosis. Cell Signal, 77, 109828. doi:10.1016/j.cellsig.2020.109828. https://www.ncbi.nlm.nih.gov/pubmed/33166625

Thompson, D., Basu-Modak, S., Gordon, M., Poore, S., Markovitch, D., & Tyrrell, R. M. (2005). Exercise-induced expression of heme oxygenase-1 in human lymphocytes. Free Radic Res, 39(1), 63–69. doi:10.1080/10715760400022327. https://www.ncbi.nlm.nih.gov/pubmed/15875813

Trappe, T. A., & Liu, S. Z. (2013). Effects of prostaglandins and COX-inhibiting drugs on skeletal muscle adaptations to exercise. J Appl Physiol (1985), 115(6), 909–919. doi:10.1152/japplphysiol.00061.2013. https://www.ncbi.nlm.nih.gov/pubmed/23539318

Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., . . . Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exerc Immunol Rev, 17, 6–63. https://www.ncbi.nlm.nih.gov/pubmed/21446352https://www.ncbi.nlm.nih.gov/pubmed/21446352

Weinberg, J. B. (1998). Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med, 4(9), 557–591. doi:10.1007/BF03401758. https://www.ncbi.nlm.nih.gov/pubmed/9848075

Wlodarczyk, L., Cichon, N., Karbownik, M. S., Saluk, J., & Miller, E. (2024). Exploring the Role of MMP-9 and MMP-9/TIMP-1 Ratio in Subacute Stroke Recovery: A Prospective Observational Study. Int J Mol Sci, 25(11). doi:10.3390/ijms25115745. https://www.ncbi.nlm.nih.gov/pubmed/38891934

Xia, Y., Shao, J., Wang, H., Tan, Q., Han, Q., & Yi, M. (2021). Complex Probiotics Supplementation Improves Overtraining-Induced Muscle Inflammatory Response and Antioxidant Status Via LPS-TLR4/NF-κb Signalling Pathway in Rats. Research Square. doi:10.21203/rs.3.rs-513418/v1. http://europepmc.org/abstract/PPR/PPR340001

Xu, J., & Nunez, G. (2023). The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci, 48(4), 331–344. doi:10.1016/j.tibs.2022.10.002. https://www.ncbi.nlm.nih.gov/pubmed/36336552

 

​

iXpressGenes (iXG) Stacked Logo
687593.jpg
image (1).png

DISCLAIMER: iXpressGenes panels, including TAI™ and  APX™, were developed and its performance characteristics determined by iXpressGenes in its College of American Pathologists (CAP) accredited laboratory. They have not been cleared or approved by the U.S. Food and Drug Administration (FDA).   iXpressGenes Inc. is not a licensed medical provider.  iXpressGenes panels do not diagnose any disease or condition, including PTSD. The panels are not intended to inform treatment decisions. This test provides informational data on biomarker levels for consideration by a qualified healthcare professional within the full context of a patient's clinical evaluation.  All interpretations or information provided are derived from peer-reviewed scientific literature and are not a substitute for professional medical advice, diagnosis, or treatment. Patients must consult their physician or licensed healthcare provider before making any medical decisions.

info@ixpressgenes.com

601 Genome Way NW Suite 2023

Huntsville, AL 35806

​

Connect with us on:

  • LinkedIn
bottom of page